Comparative Genomics in Ensembl

Javier Herrero
http://www.ebi.ac.uk/~jherrero/

Ensembl Compara

A single database which contains precalculated comparative genomics data and which is linked to all the Ensembl Species databases.

Access via web interface, perl API and mysql

A production system for generating that database

Studying the evolution

- Comparing extant species
- Protein level
- Multiple alignments
- Gene Trees (protein trees)
- Genomic level
- Pairwise alignments
- Multiple alignments
- Syntenies

Protein homology

[^0]
TreeBeST - treemerge algorithm

- ML-AA-WAG4 - WAG matrix aminoacidic model - Maximum Likelihood (PHYML)
- ML-NT-HKY85 - Hasegawa-Kishino-Yano nucleotidic model - Maximum Likelihood (PHYML)
- NJ-NT-p-distance - any substitutions -neighbor-joining with bootstrap
- NJ-NT-dN - non-syn substitutions - neighborjoining with bootstrap
- NJ-NT-dS - synonymous substitutions -neighbor-joining with bootstrap
- Curated tree topology (if provided)

TreeBeST approach

ENSLAFG00000003046 Loxodonta africana ENSETEG00000013364 Echinops telfairi LOC507878 Bos taurus
ENSMLUG00000004086 Myotis lucifugus ENSFCAG00000015479 Felis catus 484782 Canis familiaris ENSEEUG00000009459 Erinaceus europaeus ENSSARG00000008529 Sorex araneus
Scap Mus musculus
Scap_predicted Rattus norvegicus ENSSTOG00000015965 Spermophilus tricedem. ENSOCUG00000003152 Oryctolagus cuniculus SCAP Homo sapiens SCAP Pan troglodytes SCAP Macaca mulatta
ENSOGAG00000002279 Otolemur garnetti SCAP Monodelphis domestica
Q5F3Q8_CHICK Gallus gallus SCAP Xenopus tropicalis

ENSGACG00000012618 Gasterosteus aculeatus
ENSORLG00000015864 Oryzias latipes ENSORLG00000015859 Oryzias latipes SINFRUG00000139640 Takifugu rubripes GSTENG00006835001 Tetraodon nigroviridis LOC558292 Danio rerio
ENSDARG00000053722 Danio rerio ENSCSAVG00000007555 Ciona savignyi ENSCING00000008250 Ciona intestinalis

Homology inference

Dubious duplications

Orthologues : any gene pairwise relation where the ancestor node is a SPECIATION event.
Paralogues: any gene pairwise relation where the ancestor node is a DUPLICATION event.

Topological timing of

Sep 2008 duplication events

Sitewise dN/dS

- Looking for nonneutral evolution at specific codons in the alignments
- SLR by Massingham and Goldman (EBI)
- Doable in $24 \mathrm{hr} x 400 \mathrm{CPUs}$
- SLREnsembl -- Choosing subtrees based on dS

 ENSRNOPOOOOOO01475_Rnor_/1-3753 QYQQLPVSSETLLQLYQP-AMELO10133-PA Aaeg $11-3753$ SFKPLDOROREL -PVOOM
 ENSCAFPOOOOOOO9557 Cfam $1-3753$ QYOOLPASDFTL SOVYOP GSTENPOOO 30170001 Tnig $1-3753$ OFEDLOASEFLI STYFOP ENSGACPOOOOOO15199 GACU ENSDNOPOOOOOO13476 DNov-11-3753 QYQQLPTSDEILFQVYOP ENSOGAPO00000009477 Ogar - $1-3753$ ENSPPYP000000005997_Ppyg /1-3753 QYOQLPVSDFTLFOVYOP ENSOANPOOOOOO24376_Oana_1-3753 QYOLLPASHETLFRIYRP
 ENSCPOPOOOOOOO4635_Cpor_/1-3753 QYQQLTASDEILLQAYRP ENSPPTRPO0000009910_Ptro_/1-3753 QYQQLPVSDEILFQVYQP ENSOCUPO0000014514_Ocun_/1-3753 QYQQLLASDEILLQVYQP ENSETEPO0000003277_Ete1_/1-3753 QYQPLPASEEILSQVYQP ENSEEUPOOOO0008968_Eeur_/1-3753 QYQOLPASDEFLFQVYQP ENSMLUPOOOOOO12516_M1UC_/1-3753 QFQQIPASDEILFKVYQP AMEL014774-PA_Aaeg_/1-3753 SFKPLD-QR@CELPVOQM-RTLTRIADIETSNFRPMFNEFDTIGIVIOVGAIESKKFOTVYLADIDKNLLCVNFWSGIKEY

Quality/1-3753 \square

Gene Tree in Ensembl

Sep 2008

LEGEND
$-\times 1$ br
$\begin{array}{ll}\text {--. } & \times 1 \text { brarch length } \\ \times 10 \text { branch length }\end{array}$ --- $\times 100$ branch length

Gere ID Species A current gene
Gere ID Species A withinsp. paralogue

- speciation node
- duplication node
- AA alignment match/mismatch
- AA alignment gap

Genomic Alignments

- BlastZ-Net
- used to compare closely related pair of species
- BlastZ-raw \rightarrow BlastZ-chain \rightarrow BlastZ-net

- Translated BLAT
- used to compare more distant pair of species
- we use the same approach (chain \& net) starting from 50!
- Pecan (Mercator-Pecan)
- multiple global alignments
- all vs all coding exons wublastp \rightarrow Mercator \rightarrow Pecan on each syntenic block
- EPO (Enredo-Pecan-Ortheus)
- Segmental duplications + multiple alignments + ancestral sequences inference
- Anchors \rightarrow Enredo \rightarrow Pecan \rightarrow Ortheus
- GERP (G. Cooper et al., Stanford)
- Scores the conservation of each col. in the alignment
- Define constrained elements as stretches of high scores

Mercator-Pecan Pipeline Overview

- Mercator
- Defines blocks of orthologous sequences based on coding exon similarities
- Pecan
- Consistency based multiple aligner
- Optimized to cope with long genomic sequences
- GERP
- Estimates the conservation of each position in the alignment by looking at the expected and observed number of mutations

Strategy

- Global aligner needs orthology maps
- Mercator-Pecan pipeline:
- 1. Get all coding exons
- 2. all-vs-all blastp
- 3. Mercator => strict maps
- 4. Pecan => multiple alignments

Strategy

- Use all coding exons

Strategy

- Use all coding exons
- Get sets of best reciprocal hits

Strategy

- Use all coding exons
- Get sets of best reciprocal hits
- Create orthology maps

Strategy

- Use all coding exons
- Get sets of best reciprocal hits
- Create orthology maps
- Build multiple global alignments
a consistency based multiple-alignment program

Pecan optimizations

- Look for anchors (regions of high similarity)
- perform a banded posterior alignment
- Use cut lines and points to generate effective sub problems for each pairwise alignment simultaneously
- Mưch redundancy between pairwise alignments: use transitive anchors

B

EPO Pipeline Overview

- Ancestral sequences reconstructor (Tree Aligner)
- Infers the history of insertion and deletions
- GERP
- Estimates the conservation of each position in the alignment

ENREDO graph

- Similar in spirit to a De Bruijn graph of sequences used for assembly
- homologous regions between genomes will be represented as one edge
- Formed by creating a set of non-redundant anchors (short regions) which are present 0,1 or multiple times in each extant genome
- Anchors could be all coding exons, made non-redundant to handle duplications
- In our case, a series of pairwise alignments defines short regions of high homology between genomes

ENREDO: Mapping the anchors

- Mapping the anchors
- Cleaning up the anchor set
- Removal of overlapping anchors
- Removal of anchors mapping too many times

ENREDO Graph

A

C

Enredo assessment

- Human, Mouse, Rat, Dog and Cow
- Mercator, MultiZ and Enredo coverage

- Putative rearrangements between human chromosome X and any autosome in another species

Method	blocks		length	
Mercator	15	6.7%	2750241	
MultiZ*	211117	28.0%	25785059	
Enredo	19.0%			
\quad * from UCSC 17	1.3%	1168017	1.0%	
	way MultiZ			

Multiple aligner assessment: ancestral repeats

ancestral repeat (consensus sequence)

Multiple aligner assessment: ancestral repeats

Ortheus

- Addresses the inference of insertion-deletion histories and substitution events
- Uses a multiple alignment as guiding input
- Reconstructs the ancestral sequences in the tree and refines the input alignment
- Insertion/deletion events are handled using a branch

Ortheus transducer model for 2 descendants and 1 ancestor

Ortheus: inference of the ancestral sequence

- Substitution are handled using Tamura-Nei nucleotide substitution model.
- Works in a progressive manner:

- Ancestral sequences are represented using weighted sequence graphs

Display on AlignSliceView

wellcome trust
sanger

Sep 2008

Current sets of alignments

- Primates:
- 4-way EPO alignments (high-coverage genomes only)
- Mammals
- 9-way EPO alignments (high-coverage genomes only)
- 23-way EPO alignments (including 2X genomes)
- Amniota
- 12-way Mercator-Pecan alignments (high-cov. Only)
- Fish
- Planning a 5-way EPO alignments set for 2009

Gerp Constrained Elements

- Stretches of the alignment with a high conservation

Cooper et al. Genome Research, 2005

- Constrained elements and coding exons
- 74% of coding exons are associated with constr. elem.
- 22% of constr. elem. are associated with coding exons
- Co-occurrence of features
- Annotation of constr. elements
- genes, TSS, Reg. features...
- Annotation of SNPs
- in constrained elements or not

ContigView: p23

GeneSeqAlingView: p23

THIS STYLE: Location of conserved regions (where $>50 \%$ of bases in alignments match)
THIS STYLE: Location of START/STOP codons

THIS STYLE: Location of selected exons
THIS STYLE: Location of SNPs
THIS STYLE: Location of deletions
Homo_sapiens > chromosome:NCBI36:17:27838014:27842583:1
Macaca_mulatta > chromosome:MMUL 1:16:27819375:27823565:1

Homo_sapiens
Macaca_mulatta
Homo_sapiens
Macaca_mulatta
Homo_sapiens
Macaca_mulatta
Homo_sapiens
Macac̄a_mulatta
Homo_sapiens
Macac̄a_mulatta
Homo_sapiens
Macaca_mulatta
Homo_sapiens
Macaca_mulatta
Homo_sapiens
Macaca_mulatta
Homo_sapiens
Macac̄a_mulatta

481 AGGGCCCGGGACTGGGGCGGCGGGGITGCGCCGAGGCGCGGGGCGGAGGGGCGCAGGGGCG 540
481 AGGGCCCGGGACTGGGGCCGCGGGGICCGCGGAGGCGCGGGGCGGAGGGGCGC
540
541 CAGGGGCGCGGCGCGGAGCCCAGCCTGGCGCTAAGAACCATCTTGTTTTCCAGGCAGATC 600
541 ---------GGCGCGGAGCCCAGCTTGGCGCTAAGAACCATCTTGTTTTCCAGGCAGATC 600
601 CAAGGGGGCAGCACGCTTCCCGGGAGCGCCCCCGCCTCCTCTCCGGGGCOGCCGCAGGCT 660
601 CAAGGGGGCAGCACGCTTCCCGGGAGCGCCCCCGCCTCCTCCCCGGGGCCACCGCAGGCT 660
661 DGGTGAGCGGTTTTATCCYTCCGGCCGGCAGGCTGGGCGCGCAGGGGCGCGAGCCCCCGC 720
661 CCGTGAGTGGITTTATCCCTCCGGCCGGCAGGCTGGGCGCGCAGGGGCGCGAGCCCCCGC 720
321 CCGGCGCGCAGCAGCACCATGGGCACGGIGCTGTCCCTGICTCCCAGCTACCGGAAGGCC 780
721 CCGGCGCGCAGCGGCACCATGGGCACGGIGCTGTCCCTGICCCOCAGCTACCGGAAGGCC 780
781 ACGCTGTTTGAGGATGGCGCGGCCACCGTGGGCCACTATACGGCCGTACAGAACAGCAAG 840
781 ACGCTGTTTGAGGATGGCGCGGCCACCGTGGGCCACTATACGGCCGTACAGAACAGCAAG 840
841 AACGCCAAGGACAAGAACCTGAAGCGCCACTCCATCATCTCCGTGCTGCCTTGGAAGAGA 900
841 AACGCCAAGGACAAGAACCTGAAGCGCCACTCCATCATCTCCGTGCTGCCTTGGAAGAGA 900
901 ATCGTGGCCGTGTCGGCCAAGAAGAAGAACTCMAAGAAGGTGCAGCCYAACAGCAGCTAC 960
901 ATCGTGGCCGTGTCGGCCAAGAAGAAGAACTCCAAGAAGGTGCAGCCCAACAGCAGCTAC 960
961 CAGAACAACATCACGCACCTCAACAATGAGAACCTGAAGAAGTCGCTGTCRTGYGCCAAC 1020
961 CAGAACAACATCACGCACCTCAACAATGAGAACCTGAAGAAGTCGCTGTCGIGCGCCAAC 1020

MultiContigView

Sep 2008

Summary

- Ensembl is a system created for the study and analysis of the genomes
- Comparative genomics
- Protein tree and inference of homologues
- Genomic alignments, conserved regions
- Many views to match different usages
- ContigView: genomic region
- MultiContigView: side-by-side comparison
- AlignSliceView: alignment in genomic context
- GeneSeqAlignView: alignment of genomic regions
- GeneTreeView: protein trees, homologues
- many other views...
- All data accessible through the web and the Perl API

Pan-Ensembl compara

- Take advantage of the whole new span of Ensembl Genomes
- Link the projects together
- Breakout session after the coffee/tea break!!

Ensembl Paul Flicek (EBI), Steve Searle (Sanger Institute)

Ensembl	Paul Flicek (EBI), Steve Searle (Sanger Institute)
Vertebrate Genomics	Mario Caccamo, Laura Clark, Jonathan Hinton, Zam Iqbal, Vasudev Kumanduri, Ilkka Lappalainen
Software	Glenn Proctor, Syed Haider, Andrew Jenkinson, Andreas Kähäri, Stephen Keenan, Rhoda Kinsella, Eugene Kulesha, Ian Longden, Daniel Rios
Comparative Genomics	Javier Herrero, Kathryn Beal, Benoît Ballester, Stephen Fitzgerald, Leo Gordon, Albert Vilella
Functional Genomics	Nathan Johnson, Stefan Gräf, Steven Wilder
Variation	Fiona Cunningham, Yuan Chen
Analysis and Annotation	Bronwen Aken, Julio Banet, Susan Fairley, Jan-Hinnerck Vogel, Simon White, Amonida Zadissa
Web Team	James Smith, Eugene Bragin, Anne Parker, Bethan Pritchard, Steve Trevanion (VEGA)
Zebrafish	Kerstin Howe, Britt Reimholz, James Torrance
VectorBase	Dan Lawson, Martin Hammond, Karyn Megy
Outreach	Xosé M Fernández, Bert Overduin, Michael Schuster (QC), Giulietta Spudich
Systems \& Support	Guy Coates, Tim Cutts, Shelley Goddard
Research	Ian Dunham, Damian Keefe, Alison Meynert, Dace Ruklisa, Guy Slater, Daniel Zerbino
Ensembl Strategy	Ewan Birney, Richard Durbin, Tim Hubbard

[^0]: BSR: Blast Score Ratio. When 2 proteins P 1 and P 2 are compared, BSR=scoreP1P2/max(self-scoreP1 or self-scoreP2). The default threshold used in the initial clustering step is 0.33 .

