

# Comparative Genomics in Ensembl



*Javier Herrero* http://www.ebi.ac.uk/~jherrero/

EBI - Wellcome Trust Genome Campus, UK



# **Ensembl Compara**



A single database which contains precalculated comparative genomics data and which is linked to all the Ensembl Species databases.

Access via web interface, perl API and mysql

A production system for generating that database





# **Studying the evolution**

- Comparing extant species
- Protein level
  - Multiple alignments
  - Gene Trees (protein trees)
- Genomic level
  - Pairwise alignments
  - Multiple alignments
  - Syntenies

- Conserved regions
- Non-conserved-regions
- Lineage-specific changes



# **Protein homology**



BSR: Blast Score Ratio. When 2 proteins P1 and P2 are compared, BSR=scoreP1P2/max(self-scoreP1 or self-scoreP2). The default threshold used in the initial clustering step is 0.33.



## **TreeBeST – treemerge algorithm**

- ML-AA-WAG4 WAG matrix aminoacidic model – Maximum Likelihood (PHYML)
- ML-NT-HKY85 Hasegawa-Kishino-Yano nucleotidic model – Maximum Likelihood (PHYML)
- NJ-NT-p-distance any substitutions neighbor-joining with bootstrap
- NJ-NT-dN non-syn substitutions neighborjoining with bootstrap
- NJ-NT-dS synonymous substitutions neighbor-joining with bootstrap
- Curated tree topology (if provided)





# **Homology inference**





## **Dubious duplications**



Sep 2008

Orthologues : any gene pairwise relation where the ancestor node is a SPECIATION event. Paralogues : any gene pairwise relation where the ancestor node is a DUPLICATION event.









- Looking for **nonneutral** evolution at **specific codons** in the alignments
- SLR by Massingham and Goldman (EBI)
  - Doable in 24hr x 400CPUs
  - SLREnsembl -- Choosing subtrees based on dS





## **Gene Tree in Ensembl**





# **Genomic Alignments**

- BlastZ-Net
  - used to compare closely related pair of species
  - BlastZ-raw  $\rightarrow$  BlastZ-chain  $\rightarrow$  BlastZ-net



- Translated BLAT
  - used to compare more distant pair of species
  - we use the same approach (chain & net) starting from 50!
- Pecan (Mercator-Pecan)
  - multiple global alignments
  - all vs all coding exons wublastp  $\rightarrow$  Mercator  $\rightarrow$  Pecan on each syntenic block
- EPO (Enredo-Pecan-Ortheus)
  - Segmental duplications + multiple alignments + ancestral sequences inference
  - Anchors  $\rightarrow$  Enredo  $\rightarrow$  Pecan  $\rightarrow$  Ortheus
- GERP (G. Cooper *et al.*, Stanford)
  - Scores the conservation of each col. in the alignment
  - Define constrained elements as stretches of high scores



## **Mercator-Pecan Pipeline Overview**

- Mercator
  - Defines blocks of orthologous sequences based on coding exon similarities

#### • Pecan

- Consistency based multiple aligner
- Optimized to cope with long genomic sequences





#### • GERP

 Estimates the conservation of each position in the alignment by looking at the expected and observed number of mutations





## **Strategy**

- Global aligner needs orthology maps
- Mercator-Pecan pipeline:
  - 1. Get all coding exons
  - 2. all-vs-all blastp
  - 3. Mercator => strict maps
  - 4. Pecan => multiple alignments







- Use all coding exons
- Get sets of best reciprocal hits





- Use all coding exons
- Get sets of best reciprocal hits
- Create orthology maps



• Build multiple global alignments



### Pecan

#### a consistency based multiple-alignment program

ATGGGCTTTTGCATTTG

ATGGGCAGCATTTG

ACGGGCATTTGCTTCTG

guide tree

ATGGGCTTTTGCATTTG ATGGGCA---GCATTTG ACGGGCATTTGCTTCTG

ATGGGCTTTTGCATTTG

ATGGGC---AGCATTTG VS

ATGGGCTTTTGCATTTG

ATGGGCA---GCATTTG

Progressive aligner





#### a consistency based multiple-alignment program

ATGGGCTTTTGCATTTG

ATGGGCAGCATTTG

• ACGGGCATTTGCTTCTG

ATGGGCTTTTGCATTTG ACGGGCATTTGCTTCTG

ATGGGCA---GCATTTG

ATGGGCTTTTGCATTTG ATGGGCA---GCATTTG ACGGGCATTTGCTTCTG

Takes into account all pairwise alignments, across the entire tree

ATGGGCTTTTGCATTTG ATGGGCA---GCATTTG ACGGGCATTTGCTTCTG

Consistency based aligner

ATGGGCTTTTGCATTTG ATGGGCA---GCATTTG ACGGGCATTTGCTTCTG

**ATGGGCTTTTGCATTTG** 

ATGGGC---AGCATTTG

VS

ATGGGCTTTTGCATTTG

ATGGGCA---GCATTTG

Progressive aligner



# **Pecan optimizations**

- Look for anchors (regions of high similarity) 10Mb
- perform a banded posterior alignment
- Use cut lines and points to generate effective sub problems for each pairwise alignment simultaneously
- Much redundancy between pairwise alignments: use transitive anchors







hidden cut-point



# **EPO Pipeline Overview**

- Enredo
  - Defines blocks of collinear sequences
  - Supports segmental duplications
- Pecan
  - Consistency based multiple aligner
  - Optimized to cope with long genomic sequences
- Ortheus
  - Ancestral sequences reconstructor (Tree Aligner)
  - Infers the history of insertion and deletions
- GERP

Sep 2008

• Estimates the conservation of each position in the alignment













# **ENREDO graph**

- Similar in spirit to a De Bruijn graph of sequences used for assembly
  - homologous regions between genomes will be represented as one edge
- Formed by creating a set of non-redundant anchors (short regions) which are present 0, 1 or multiple times in each extant genome
- Anchors could be all coding exons, made non-redundant to handle duplications
- In our case, a series of pairwise alignments defines short regions of high homology between genomes



# **ENREDO:** Mapping the anchors

- Mapping the anchors
- Cleaning up the anchor set
  - Removal of overlapping anchors
  - Removal of anchors mapping too many times





# **ENREDO Graph**











# Enredo assessment

- Human, Mouse, Rat, Dog and Cow
- Mercator, MultiZ and Enredo coverage



• Putative rearrangements between human chromosome X and any autosome in another species

| Method   | blocks |       | length   |       |
|----------|--------|-------|----------|-------|
| Mercator | 15     | 6.7%  | 2750241  | 4.0%  |
| MultiZ*  | 211117 | 28.0% | 25785059 | 19.0% |
| Enredo   | 19     | 1.3%  | 1168017  | 1.0%  |

\* from UCSC 17 way MultiZ







# Ortheus

- Addresses the inference of insertion-deletion histories and substitution events
- Uses a multiple alignment as guiding input
- Reconstructs the ancestral sequences in the tree and refines the input alignment





# Ortheus transducer model for 2 descendants and 1 ancestor





# Ortheus: inference of the ancestral sequence

- Substitution are handled using Tamura-Nei nucleotide substitution model.
- Works in a progressive manner:



• Ancestral sequences are represented using weighted sequence graphs





#### Display on AlignSliceView







# **Current sets of alignments**

- Primates:
  - 4-way EPO alignments (high-coverage genomes only)
- Mammals
  - 9-way EPO alignments (high-coverage genomes only)
  - 23-way EPO alignments (including 2X genomes)
- Amniota
  - 12-way Mercator-Pecan alignments (high-cov. Only)
- Fish
  - Planning a 5-way EPO alignments set for 2009



# **Gerp Constrained Elements**

• Stretches of the alignment with a high conservation



Constrained elements and coding exons

- 74% of coding exons are associated with constr. elem.
- 22% of constr. elem. are associated with coding exons
- Co-occurrence of features
  - Annotation of constr. elements
    - genes, TSS, Reg. features...
  - Annotation of SNPs
    - in constrained elements or not





## **ContigView: p23**





# **GeneSeqAlingView:** p23

| THIS STYLE: Location of conserved regions (where >50% of bases in alignments match) |                                                                                                                                      |            |  |  |  |
|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|------------|--|--|--|
| THIS STYLE: Location of START/STOP codons                                           |                                                                                                                                      |            |  |  |  |
| THIS STYLE: Location of selected exons                                              |                                                                                                                                      |            |  |  |  |
| THIS STYLE: Location of SNPs                                                        |                                                                                                                                      |            |  |  |  |
| THIS STYLE: Location of deletions                                                   |                                                                                                                                      |            |  |  |  |
|                                                                                     |                                                                                                                                      |            |  |  |  |
|                                                                                     | mosome:NCBI36:17:27838014:27842583:1                                                                                                 |            |  |  |  |
| Macaca_mulatta > <u>chro</u>                                                        | mosome:MMUL_1:16:27819375:27823565:1                                                                                                 |            |  |  |  |
| Homo_sapiens                                                                        | 481 AGGCCCGGGACTGGGGGGGGGGGGGGGGGGGGGGGGGGG                                                                                          | 540        |  |  |  |
| Macaca_mulatta                                                                      | 481 AGGGCCCGGGACTGGGGGCGCGCGGGGGGGGGGGGGGGG                                                                                          | 540        |  |  |  |
| Homo sapiens                                                                        | 541 CAGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG                                                                                           | 600        |  |  |  |
| Macaca_mulatta                                                                      | 541GGCGCGGAGCCCAGCTTGGCGCTAAGAACCATCTTGTTTTCCAGGCAGATC                                                                               | 600        |  |  |  |
|                                                                                     |                                                                                                                                      | 6.60       |  |  |  |
| Homo_sapiens<br>Macaca mulatta                                                      | 601 CAAGGGGGCAGCACGCTTCCCGGGAGCGCCCCGGCTCCTCCCGGGGCCGCCGCAGGCT<br>601 CAAGGGGGCAGCACGCTTCCCGGGAGCGCCCCCGCCTCCTCCCCGGGGCCACCGCAGGCT   | 660<br>660 |  |  |  |
|                                                                                     |                                                                                                                                      |            |  |  |  |
| Homo_sapiens                                                                        | 661 CGGTGAGCGGTTTTATCCYTCCGGCCGGCAGGCTGGGCGCGCAGGGGCGCGAGCCCCCGC                                                                     | 720        |  |  |  |
| Macaca_mulatta                                                                      | 661 CCGTGAGTGGTTTTATCCCTCCGGCCGGCAGGCGCGCGCG                                                                                         | 720        |  |  |  |
| Homo sapiens                                                                        | 721 CCGGCGCGCAGCAGCACCATGGGCACGGTGCTGTCCCTGTCTCCCAGCTACCGGAAGGCC                                                                     | 780        |  |  |  |
| Macaca_mulatta                                                                      | 721 CCGGCGCGCAGCGGCACC <mark>ATG</mark> GGCACGGTGCTGTCCCTGTCCCCAGCTACCGGAAGGCC                                                       | 780        |  |  |  |
| Homo sapiens                                                                        | 781 ACGCTGTTTGAGGATGGCGCGGCCACCGTGGGCCACTATACGGCCGTACAGAACAGCAAG                                                                     | 840        |  |  |  |
| Macaca mulatta                                                                      | 781 ACGCTGTTTGAGGATGGCGCGGCCACCGTGGGCCACTATACGGCCGTACAGAACAGCAAG                                                                     | 840        |  |  |  |
| —                                                                                   |                                                                                                                                      |            |  |  |  |
| Homo_sapiens<br>Macaca mulatta                                                      | 841 AACGCCAAGGACAAGAACCTGAAGCGCCACTCCATCATCTCCGTGCTGCCTTGGAAGAGA<br>841 AACGCCAAGGACAAGAACCTGAAGCGCCACTCCATCATCTCCGTGCTGCCTTGGAAGAGA | 900<br>900 |  |  |  |
| Macaca_mulatta                                                                      | 841 ARCBCCARGERCARGERCCTGERCCGCCACTCCATCATCTCCGTGCTGCCTTGERAGAGR                                                                     | 900        |  |  |  |
| Homo_sapiens                                                                        | 901 ATCGTGGCCGTGTCGGCCAAGAAGAAGAACTCMAAGAAGGTGCAGCC <mark>Y</mark> AACAGCAGCTAC                                                      | 960        |  |  |  |
| Macaca_mulatta                                                                      | 901 ATCGTGGCCGTGTCGGCCAAGAAGAAGAACTCCAAGAAGGTGCAGCCCAACAGCAGCTAC                                                                     | 960        |  |  |  |
| Homo sapiens                                                                        | 961 CAGAACAACATCACGCACCTCAACAATGAGAACCTGAAGAAGTCGCTGTCRTGYGCCAAC                                                                     | 1020       |  |  |  |
| Macaca_mulatta                                                                      | 961 CAGAACAACATCACGCACCTCAACAATGAGAACCTGAAGAAGTCGCTGTCGTGCGCCAAC                                                                     | 1020       |  |  |  |
|                                                                                     |                                                                                                                                      |            |  |  |  |





# **MultiContigView**





# Summary

- Ensembl is a system created for the study and analysis of the genomes
- Comparative genomics
  - Protein tree and inference of homologues
  - Genomic alignments, conserved regions
- Many views to match different usages
  - ContigView: genomic region
  - MultiContigView: side-by-side comparison
  - AlignSliceView: alignment in genomic context
  - GeneSeqAlignView: alignment of genomic regions
  - GeneTreeView: protein trees, homologues
  - many other views...
- All data accessible through the web and the Perl API



# Pan-Ensembl compara



- Take advantage of the whole new span of Ensembl Genomes
- Link the projects together
- Breakout session after the coffee/tea break!!





Ensembl Paul Flicek (EBI), Steve Searle (Sanger Institute)

0

| Mario Caccamo, Laura Clark, Jonathan Hinton, Zam Iqbal, Vasudev Kumanduri, Ilkka Lappalainen                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------|
| <u>Glenn Proctor</u> , Syed Haider, Andrew Jenkinson, Andreas Kähäri, Stephen Keenan, Rhoda Kinsella,<br>Eugene Kulesha, Ian Longden, Daniel Rios |
| Javier Herrero, Kathryn Beal, Benoît Ballester, Stephen Fitzgerald, Leo Gordon, Albert Vilella                                                    |
| Nathan Johnson, Stefan Gräf, Steven Wilder                                                                                                        |
| Fiona Cunningham, Yuan Chen                                                                                                                       |
| Bronwen Aken, Julio Banet, Susan Fairley, Jan-Hinnerck Vogel, Simon White, Amonida Zadissa                                                        |
| James Smith, Eugene Bragin, Anne Parker, Bethan Pritchard, Steve Trevanion (VEGA)                                                                 |
| Kerstin Howe, Britt Reimholz, James Torrance                                                                                                      |
| Dan Lawson, Martin Hammond, Karyn Megy                                                                                                            |
| Xosé M Fernández, Bert Overduin, Michael Schuster (QC), Giulietta Spudich                                                                         |
| Guy Coates, Tim Cutts, Shelley Goddard                                                                                                            |
| Ian Dunham, Damian Keefe, Alison Meynert, Dace Ruklisa, Guy Slater, Daniel Zerbino                                                                |
| Ewan Birney, Richard Durbin, Tim Hubbard                                                                                                          |
|                                                                                                                                                   |